Enhancement-mode β-Ga2O3 U-shaped gate trench vertical MOSFET realized by oxygen annealing

Author:

Zhou Xuanze1ORCID,Ma Yongjian2,Xu Guangwei1ORCID,Liu Qi1ORCID,Liu Jinyang1,He Qiming1,Zhao Xiaolong1,Long Shibing1ORCID

Affiliation:

1. School of Microelectronics, University of Science and Technology of China, Hefei 230026, China

2. Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123, China

Abstract

Vertical metal–oxide–semiconductor field effect transistor (MOSFET) is essential to the future application of ultrawide bandgap β-Ga2O3. In this work, we demonstrated an enhancement-mode β-Ga2O3 U-shaped gate trench vertical metal–oxide–semiconductor field effect transistor (UMOSFET) featuring a current blocking layer (CBL). The CBL was realized by high-temperature annealing under oxygen ambient, which provided electrical isolation between the source and drain electrodes. The CBL thicknesses of different annealing temperatures were derived from C–V measurements and the Fermi level position of the sample surfaces of different annealing temperature was characterized by x-ray photoelectron spectroscopy measurements, indicating good process controllability. Furthermore, photoluminescence spectra were measured to study the effect of oxygen annealing. The fabricated UMOSFET showed normally off with a Vth of 11.5 V, an on-state resistance of 1.48 Ω cm2, a maximum on-state current of 11 A/cm2, an on–off ratio of 6 × 104, and a three-terminal breakdown voltage over 100 V. This work paves a way to form a CBL and broadens the design space for high-power β-Ga2O3 vertical transistors.

Funder

Key-Area Research and Development Program of Guangdong Province

Strategic Priority Research Program of the Chinese Academy of Sciences

Key Research Program of Frontier Science, Chinese Academy of Sciences

National Natural Science Foundation of China

Fundamental Research Plan

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3