Abstract
An inserted novel polarization-graded AlGaN back barrier structure is designed to enhance performances of In0.17Al0.83N/GaN high electron mobility transistor (HEMT), which is investigated by the two-dimensional drift-diffusion simulations. The results indicate that carrier confinement of the graded AlGaN back-barrier HEMT is significantly improved due to the conduction band discontinuity of about 0.46 eV at interface of GaN/AlGaN heterojunction. Meanwhile, the two-dimensional electron gas (2DEG) concentration of parasitic electron channel can be reduced by a gradient Al composition that leads to the complete lattice relaxation without piezoelectric polarization, which is compared with the conventional Al0.1Ga0.9N back-barrier HEMT. Furthermore, compared to the conventional back-barrier HEMT with a fixed Al-content, a higher transconductance, a higher current and a better radio-frequency performance can be created by a graded AlGaN back barrier.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献