Asymmetric GaN High Electron Mobility Transistors Design with InAlN Barrier at Source Side and AlGaN Barrier at Drain Side

Author:

Lv Beibei1ORCID,Zhang Lixing1ORCID,Mo Jiongjiong1

Affiliation:

1. Institute of Astronautic Electronic Engineering, Zhejiang University, Hangzhou 310027, China

Abstract

The InAlN/GaN HEMT has been identified as a promising alternative to conventional AlGaN/GaN HEMT due to its enhanced polarization effect contributing to higher 2DEG in the GaN channel. However, the InAlN barrier usually suffers from high leakage and therefore low breakdown voltage. In this paper, we propose an asymmetrical GaN HEMT structure which is composed of an InAlN barrier at the source side and an AlGaN barrier at the drain side. This novel device combines the advantages of high 2DEG density at the source side and low electrical-field crowding at the drain side. According to the TCAD simulation, the proposed asymmetric device exhibits better drain current and transconductance compared to AlGaN/GaN HEMT, and enhanced breakdown voltage compared to InAlN/GaN HEMT. The current collapse effects have also been evaluated from the process-related point of view. Possible higher interface traps related to the two-step epitaxial growth for the asymmetric structure fabrication will not exacerbate the current collapse and reliability.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3