Three-dimensional reciprocal space mapping with a two-dimensional detector as a low-latency tool for investigating the influence of growth parameters on defects in semipolar GaN

Author:

Bauer Sondes,Lazarev Sergey,Bauer Martin,Meisch Tobias,Caliebe Marian,Holý Václav,Scholz Ferdinand,Baumbach Tilo

Abstract

A rapid nondestructive defect assessment and quantification method based on X-ray diffraction and three-dimensional reciprocal-space mapping has been established. A fast read-out two-dimensional detector with a high dynamic range of 20 bits, in combination with a powerful data analysis software package, is set up to provide fast feedback to crystal growers with the goal of supporting the development of reduced defect density GaN growth techniques. This would contribute strongly to the improvement of the crystal quality of epitaxial structures and therefore of optoelectronic properties. The method of normalized three-dimensional reciprocal-space mapping is found to be a reliable tool which shows clearly the influence of the parameters of the metal–organic vapour phase epitaxial and hydride vapour phase epitaxial (HVPE) growth methods on the extent of the diffuse scattering streak. This method enables determination of the basal stacking faults and an exploration of the presence of other types of defect such as partial dislocations and prismatic stacking faults. Three-dimensional reciprocal-space mapping is specifically used in the manuscript to determine basal stacking faults quantitatively and to discuss the presence of partial dislocations. This newly developed method has been applied to semipolar GaN structures grown on patterned sapphire substrates (PSSs). The fitting of the diffuse scattering intensity profiles along the stacking fault streaks with simulations based on a Monte Carlo approach has delivered an accurate determination of the basal plane stacking fault density. Three-dimensional reciprocal-space mapping is shown to be a method sensitive to the influence of crystallographic surface orientation on basal stacking fault densities during investigation of semipolar (11{\overline 2}2) GaN grown on anr-plane (1{\overline 1}02) PSS and semipolar (10{\overline 1}1) GaN grown on ann-plane (11{\overline 2}3) PSS. Moreover, the influence of HVPE overgrowth at reduced temperature on the quality of semipolar (11{\overline 2}2) GaN has been studied.

Publisher

International Union of Crystallography (IUCr)

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3