Reciprocal space x-ray computed tomography

Author:

Vailionis Arturas12ORCID,Wu Liyan34ORCID,Spanier Jonathan E.34ORCID

Affiliation:

1. Stanford Nano Shared Facilities, Stanford University 1 , Stanford, California 94305, USA

2. Department of Physics, Kaunas University of Technology 2 , LT-51368 Kaunas, Lithuania

3. Department of Mechanical Engineering and Mechanics, Drexel University 3 , Philadelphia, Pennsylvania 19104, USA

4. 4 Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, USA

Abstract

Three-dimensional reciprocal space mapping (3D-RSM) offers crucial insights into the intricate microstructural properties of materials, including spatial domain distribution, directional long-range ordering, multilayer-substrate mismatch, layer tilting, and defect structure. Traditionally, 3D-RSMs are conducted at synchrotron facilities where instrumental resolution is constrained in all three directions. Lab-based sources have often been considered suboptimal for 3D-RSM measurements due to poor instrumental resolution along the axial direction. However, we demonstrate that, by employing three-dimensional reciprocal space x-ray computed tomography (RS-XCT), the same perceived limitation in resolution can be effectively leveraged to acquire high quality 3D-RSMs. Through a combination of ultrafast reciprocal space mapping and computed tomography reconstruction routines, lab-based 3D-RSMs achieve resolutions comparable to those obtained with synchrotron-based techniques. RS-XCT introduces a practical modality for lab-based x-ray diffractometers, enabling high-resolution 3D-RSM measurements on a variety of materials exhibiting complex three-dimensional scattering landscapes in reciprocal space.

Funder

National Science Foundation

U.S. Army Research Laboratory

U.S. Army Research Office

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3