Simulation and Experimental Investigation of the Radial Groove Effect on Slurry Flow in Oxide Chemical Mechanical Polishing

Author:

Cho Yeongkwang,Liu Pengzhan,Jeon Sanghuck,Lee Jungryul,Bae Sunghoon,Hong Seokjun,Kim Young Hwan,Kim Taesung

Abstract

Slurry flow on the pad surface and its effects on oxide chemical mechanical polishing (CMP) performance were investigated in simulations and experiments. A concentric groove pad and the same pad with radial grooves were used to quantitatively compare the slurry saturation time (SST), material removal rate (MRR), and non-uniformity (NU) in polishing. The monitored coefficient of friction (COF) and its slope were analyzed and used to determine SSTs of 25.52 s for the concentric groove pad and 16.06 s for a certain radial groove pad. These values were well correlated with the simulation prediction, with around 5% error. Both the laminar flow and turbulent flow were included in the sliding mesh model. The back mixing effect, which delays fresh slurry supply, was found in the pressure distribution of the wafer–pad interface.

Funder

Korea Institute for Advancement of Technology grant funded by the Korea Government

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3