Computation of Seeds for LFSR -Based n -Detection Test Generation

Author:

Pomeranz Irith1

Affiliation:

1. Purdue University, West Lafayette, IN

Abstract

This article describes a new procedure that generates seeds for LFSR -based test generation when the goal is to produce an n -detection test set. The procedure does not use test cubes in order to avoid the situation where a seed does not exist for a given test cube with a given LFSR . Instead, the procedure starts from a set of seeds that produces a one-detection test set. It modifies seeds to obtain new seeds such that the tests they produce increase the numbers of detections of target faults. The modification procedure also increases the number of faults that each additional seed detects. Experimental results are presented to demonstrate the effectiveness of the procedure.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Reference30 articles.

1. Using the Berlekamp-Massey algorithm to obtain LFSR characteristic polynomials for TPG

2. An efficient test data reduction technique through dynamic pattern mixing across multiple fault models

3. P. H. Bardell W. H. McAnney and J. Savir. 1987. Built-in Test for VLSI: Pseudorandom Techniques. Wiley-Interscience New York NY. P. H. Bardell W. H. McAnney and J. Savir. 1987. Built-in Test for VLSI: Pseudorandom Techniques. Wiley-Interscience New York NY.

4. OPMISR: the foundation for compressed ATPG vectors

5. Impact of multiple-detect test patterns on product quality

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Test Point Insertion for Multi-Cycle Power-On Self-Test;ACM Transactions on Design Automation of Electronic Systems;2022-09-13

2. Applying Artificial Neural Networks to Logic Built-in Self-test: Improving Test Point Insertion;Journal of Electronic Testing;2022-08

3. Special Session: Survey of Test Point Insertion for Logic Built-in Self-test;2020 IEEE 38th VLSI Test Symposium (VTS);2020-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3