Investigation of Effect of Creep Strain on Low-Cycle Fatigue of Lead-Free Solder by Cyclic Loading Using Stepped Ramp Waves

Author:

Ohguchi Ken-ichi1,Sasaki Katsuhiko2

Affiliation:

1. Department of Materials Science and Engineering, Akita University, Tegatagakuen-cho 1-1, Akita 010-8502, Japan

2. Division of Human Mechanical Systems and Design, Hokkaido University, N13, W8, Kita-ku, Sapporo 060-8628, Japan

Abstract

The fatigue life of a material varies with the strain rate if it has time-dependent deformation. An interesting phenomenon related to the effect of the strain rate on the fatigue life can be observed when a cyclic tension-compression loading of which strain rate in the tensile region is different from that in the compressive region is employed for the fatigue test. Different fatigue lives due to different strain rates in the tensile and compression regions originate from the difference of development behaviors of creep strain generated in the cyclic loading. This paper investigates the effects of creep strain on the difference of fatigue life due to the different strain rate in the tensile and compression regions. The creep strain of the lead-free solder Sn–3.0Ag–0.5Cu subjected to a cyclic loading was investigated using stepped ramp wave loading. The experimental results reveal that the creep strain develops differently in the tensile and compression regions. A new parameter is proposed for estimating fatigue life when the strain rate varies in the loading direction.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3