Properties of the Bennett Mechanism Derived From the RRRS Closure Ellipse

Author:

Milenkovic Paul1,Brown Morgan V.2

Affiliation:

1. Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53706

2. Department of Mathematics, University of California, Berkeley, 970 Evans Hall 3840, Berkeley, CA 94720-3840

Abstract

For many single-loop closed-chain mechanisms, mobility may be characterized by the closure of sets in the theory of Lie groups. The four-revolute (4R) Bennett mechanism remains a persistent exception, requiring the formulation and expression of solutions to the loop closure relations, either directly or indirectly through spatial geometric figures. The simpler loop closure relations of the revolute-revolute-revolute-spherical (RRRS) loop, however, place conditions on the mobility of the 4R mechanism. That loop closure in turn may be interpreted as the congruence of a pair of ellipses. This new result is applied to proving the uniqueness of the Bennett mechanism along with deriving conditions where it is free from singularities. Design parameters are also identified for overconstrained RRRS mechanisms with 1DOF that are neither plane nor line symmetric. Such mechanisms, however, place the S-joint along the revolute axis of an underlying Bennett mechanism.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3