Analysing the Kinematic Characteristics of Bennett Mechanisms and Its Networks for Usage in Forming Deployable Structures

Author:

Valayil Tony punnoose,Velappan Selladurai,Pandian Prakash Lakshmana

Abstract

Two types of bennett mechanism are      encountered in most of the related literatures. This research aims at finding the best type of bennett mechanism out of the two and then using it for suitable application. One type of bennett mechanism is known as equilateral bennett mechanism, which has all the four kinematic links of equal lengths. Next type is a bennett mechanism having their opposite links of equal length. Using the two types of bennett mechanism, two different networks are created. Their working range, minimum foldability and maximum foldability of the networks were identified using MATLAB-SimMechanics toolbox. Thus, the network having better foldability was identified, so that it can be used for making foldable tent application, which is a deployable structure. The results from the analysis prove that equilateral bennett mechanism had better foldability than its counterpart. Then on analyzing the shapes of the networks, it was found that the networks had a saddle shape. The obtained saddle surface provided certain results like, when the twist angles of the bennett links were varied, saddle surfaces with more steepness are obtained. The influence of twist angle on angular displacement, angular velocity, and angular acceleration of the mechanism were also analyzed. Singularity analysis of these networks was done in Matlab-SimMechanics simulation environment. Coupler curves for both types of bennett mechanism were plotted to identify the trajectory of the output links

Publisher

Kaunas University of Technology (KTU)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3