Affiliation:
1. Department of Mechanical Engineering & Centre for Intelligent Machines, McGill University, Montreal
Abstract
As shown in this paper, when designing parallel manipulators for tasks involving less than six degrees of freedom, the topology can be laid out by resorting to qualitative reasoning. More specifically, the paper focuses on cases whereby the manipulation tasks pertain to displacements with the algebraic structure of a group. Besides the well-known planar and spherical displacements, this is the case of displacements involving: rotation about a given axis and translation in the direction of the same axis (cylindrical subgroup); translation in two and three dimensions (two- and three-dimensional translation subgroups); three independent translations and rotation about an axis of fixed direction, what is known as the Scho¨nflies subgroup; and similar to the Scho¨nflies subgroup, but with the rotation and the translation in the direction of the axis of rotation replaced by a screw displacement. For completeness, the fundamental concepts of motion representation and groups of displacements, as pertaining to rigid bodies, are first recalled. Finally, the concept of Π-joint, introduced elsewhere, is generalized to two and three degrees of freedom, thereby ending up with the Π2-and the Π3-joints, respectively.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Reference22 articles.
1. Hunt, K. H. , 1983, “Structural Kinematics of In-Parallel-Actuated Robot Arms,” J. Eng. Mech. Div., 105, pp. 705–712.
2. Gosselin, C., and Angeles, J., 1987, “The Optimum Kinematic Design of a Spherical Three-Degree-of-Freedom Parallel Manipulator,” Proc. 13th ASME Design Automation Conference, Sept. 27–30, Boston, pp. 111–115.
3. Craver, W. M., 1989, “Structural Analysis and Design of a Three-Degree-of-Freedom Robotic Shoulder Module,” Master’s Thesis, The University of Texas at Austin, Department of Mechanical Engineering, Austin.
4. Lee, K. M., and Shah. D. K., 1987, “Kinematic Analysis of a Three-Degree-of-Freedom in Parallel Actuated Manipulators,” Proc. IEEE Int. Conf. Robotics and Automation, Vol. 1, pp. 345–350.
5. Lee, K. M., and Arjuman, S., 1991, “A 3-DOF Micromotion In-Parallel Actuated Manipulator,” IEEE Trans. Rob. Autom., 7(5), pp. 634–640.
Cited by
130 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献