New Approach to the Modeling of Complex Multibody Dynamical Systems

Author:

Schutte Aaron1,Udwadia Firdaus2

Affiliation:

1. Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453

2. Departments of Aerospace and Mechanical Engineering, Civil Engineering, Mathematics, Systems Architecture Engineering, and Information and Operations Management, University of Southern California, 430K Olin Hall, Los Angeles, CA 90089-1453

Abstract

In this paper, a general method for modeling complex multibody systems is presented. The method utilizes recent results in analytical dynamics adapted to general complex multibody systems. The term complex is employed to denote those multibody systems whose equations of motion are highly nonlinear, nonautonomous, and possibly yield motions at multiple time and distance scales. These types of problems can easily become difficult to analyze because of the complexity of the equations of motion, which may grow rapidly as the number of component bodies in the multibody system increases. The approach considered herein simplifies the effort required in modeling general multibody systems by explicitly developing closed form expressions in terms of any desirable number of generalized coordinates that may appropriately describe the configuration of the multibody system. Furthermore, the approach is simple in implementation because it poses no restrictions on the total number and nature of modeling constraints used to construct the equations of motion of the multibody system. Conceptually, the method relies on a simple three-step procedure. It utilizes the Udwadia–Phohomsiri equation, which describes the explicit equations of motion for constrained mechanical systems with singular mass matrices. The simplicity of the method and its accuracy is illustrated by modeling a multibody spacecraft system.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference16 articles.

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3