Friction compensation and observer-based adaptive sliding mode control of electromechanical actuator

Author:

Zhang Mingyue1ORCID,Zhou Man1,Liu Hui1,Zhang Baiqiang1,Zhang Yulian1,Chu Hairong1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China

Abstract

The performance of the electromechanical actuator system is usually affected by the nonlinear friction torque disturbance, model uncertainty, and unknown disturbances. In order to solve this problem, a model-based friction compensation method combined with an observer-based adaptive sliding mode controller for the speed loop of electromechanical actuator system is presented in this article. All the disturbances and model uncertainty of electromechanical actuator system are divided into two parts. One is model-based friction torque disturbance which can be identified by experiments, and the other is the residual disturbance which cannot be identified by experiments. A modified LuGre model is adopted to describe the friction torque disturbance of electromechanical actuator system. An extended state observer is designed to estimate the residual disturbance. An adaptive sliding mode controller is designed to control the system and compensate the friction torque disturbance and the residual disturbance. The stability of the electromechanical actuator system is discussed with Lyapunov stability theory and Barbalat’s lemma. Experiments are designed to validate the proposed method. The results demonstrate that the proposed control strategy not only provides better disturbance rejecting ability but also provides better steady state and dynamic performance.

Funder

the 3rd Innovation Fund of Changchun Institute of Optics, Fine Mechanics and Physics (CIOMP).

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3