Adaptive super-twisting sliding mode control with neural network for electromechanical actuators based on friction compensation

Author:

Cao Mengmeng1ORCID,Hu Jian1ORCID,Yao Jianyong1

Affiliation:

1. School of Mechanical Engineering Nanjing University of Science and Technology, Nanjing, China

Abstract

Parameter uncertainties in the electromechanical actuator system and the obvious friction nonlinearity in the low speed stage will greatly deteriorate the control performance and even lead to system instability. In this paper, an adaptive super-twisting sliding mode controller with neural network (ASTSMNNC) is proposed for the electromechanical actuator system. The LuGre model is used to describe the nonlinear friction, a nonlinear dual-observer is designed to observe the LuGre model internal friction state, a parameter adaptive law is designed to estimate the unknown parameters existing in the system, the time-varying disturbance in the system is estimated by using the universal approximation property of neural network. The feedforward compensation technology is used to compensate the estimated errors of parameters and the observed error of disturbance, the second-order nonlinear sliding mode is designed to compensate the residual estimated errors of parameters and neural network, and the chattering phenomenon caused by the sliding mode control can be reduced at the same time. What’s more, the controller theoretically guarantees a prescribed tracking performance in the presence of various uncertainties, which is very important for high-accuracy control of motion systems. Lyapunov stability theorem is used to prove that the proposed controller can achieve the bounded stability of the system. Extensive comparative experimental results are obtained to verify the high-performance nature of the proposed control strategy.

Funder

Open Fund of Aerospace Servo Drive and Transmission Technology Laboratory

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3