Friction Compensation Control of Electromechanical Actuator Based on Neural Network Adaptive Sliding Mode

Author:

Ruan Wei,Dong Quanlin,Zhang Xiaoyue,Li ZhibingORCID

Abstract

In this paper, a radial basis neural network adaptive sliding mode controller (RBF−NN ASMC) for nonlinear electromechanical actuator systems is proposed. The radial basis function neural network (RBF−NN) control algorithm is used to compensate for the friction disturbance torque in the electromechanical actuator system. An adaptive law was used to adjust the weights of the neural network to achieve real−time compensation of friction. The sliding mode controller is designed to suppress the model uncertainty and external disturbance effects of the electromechanical actuator system. The stability of the RBF−NN ASMC is analyzed by Lyapunov’s stability theory, and the effectiveness of this method is verified by simulation. The results show that the control strategy not only has a better compensation effect on friction but also has better anti−interference ability, which makes the electromechanical actuator system have better steady−state and dynamic performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3