A design of a new miniature device for solder joints’ mechanical properties evaluation

Author:

Tao Quang-Bang1,Benabou Lahouari1,Vivet Laurent2,Tan Ky-Lim3,Morelle Jean-Michel3,Le Van-Nhat1,Ben Ouezdou Fathi1

Affiliation:

1. LISV, University of Versailles Saint Quentin-en-Yvelines, University Paris-Saclay, France

2. Valeo Geeds Laboratory, La Verriere, France

3. Valeo Veem Geeds, Créteil, France

Abstract

This paper makes a focus on the design of a micro-testing machine used for evaluating the mechanical properties of solder alloys. The different parts of the testing device have been developed and assembled in a manner that will facilitate the study of miniature solder joints as used in electronic packaging. A specific procedure for fabricating miniature lap-shear joint specimens is proposed in this work. The tests carried out with the newly developed machine serve to determine the material behavior of solder joints under different controlled loading and temperature conditions. Two new solder alloys, namely SACBiNi and Innolot, are characterized in the study, showing the influence of strain rate and temperature parameters on their respective mechanical responses. In addition, the as-cast and fracture surfaces of the solder joints are observed with a scanning electron microscope to reveal the degradation mechanisms. The SACBiNi solder alloy, which contains less Ni and Sb elements, is found to have smaller shear strength than the Innolot alloy, while its elongation to rupture is significantly improved at the same strain rate level and testing temperature. The highest shear strength is 58.9 MPa and 61.1 MPa under the shear strain rate of 2.0 × 10−2 s−1 and room temperature for the SACBiNi and Innolot solder joints, respectively. In contrast, the lowest shear strength values, 26.6 MPa and 29.5 MPa for SACBiNi and Innolot, respectively, were recorded for the strain rate value of 2.0 × 10−4 s−1 and at temperature of 125℃.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3