Mechanical and Microstructural Analysis of an Ultra-Flexible Nano-Silver Paste Sintered Joint

Author:

Benabou Lahouari1,Tao Quang Bang2,Nguyen-Van Thien An1,Wang Xu Dong1,Chassagne Luc1

Affiliation:

1. LISV, Université de Versailles Saint-Quentin-en-Yvelines

2. The University of Danang - University of Science and Technology

Abstract

Soldering using common lead-free solder alloys is still one of the main die attach technology, in particular for applications in power electronics where high temperatures have to be met. However, some newly developed attach technologies promise to offer more interesting features in terms of both mechanical and thermal properties. Among these new methods, sintering of nano-silver particles allows to obtain a high thermal conductivity needed in the assemblies of electronic or optical components, as well as a relatively low elastic modulus for better stress accommodation and enhanced thermo-mechanical reliability. The sintering processing parameters, mainly the bonding pressure, the sintering temperature profile, and the sintering atmosphere, are known to have a critical effect on the properties of the sintered layer, such as its mechanical strength and electrical/thermal performances.In this study, copper substrates are fabricated and assembled by sintering using a nano-silver paste. The objective is to obtain a bonding joint with high mechanical flexbility, capable of addressing the thermomechanical stresses for systems operating under high temperatures. The measured mechanical properties of the sintered material show on the one hand low elastic modulus of the joint which is appropriate for strong difference in thermal expansion between components, and on the other hand sufficient mechanical strength for the assembly. Microstructure analyses reveal a highly porous silver network structure of the joint, with submicrometric silver grains and large micrometric porosities homogeneously distributed.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference6 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3