Identification of A-Type Proanthocyanidins in Cranberry-Based Foods and Dietary Supplements by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry, First Action Method: 2019.05

Author:

Esquivel-Alvarado Daniel1ORCID,Alfaro-Viquez Emilia1,Krueger Christian G12ORCID,Vestling Martha M3,Reed Jess D12

Affiliation:

1. Department of Animal Sciences, University of Wisconsin-Madison, Reed Research Group, 1675 Observatory Drive, Madison, WI 53706, USA

2. Complete Phytochemical Solutions, LLC, 275 Rodney Road, Cambridge, WI 53523, USA

3. Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA

Abstract

Abstract Background Cranberry proanthocyanidins (c-PAC) are oligomeric structures of flavan-3-ol units, which possess A-type interflavan bonds. c-PAC differs from other botanical sources because other PAC mostly have B-type interflavan bonds. Cranberry products used to alleviate and prevent urinary tract infections may suffer from adulteration, where c-PAC are replaced with less expensive botanical sources of PAC that contain B-type interflavan bonds. Objective Identifying the presence of A-type interflavan bonds in cranberry fruit and dietary supplements. Methods Thirty-five samples reported to contain A-type PAC (cranberry fruit and cranberry products) and 36 samples reported to contain B-type PAC (other botanical sources) were identified and differentiated using MALDI-TOF MS, deconvolution of overlapping isotope patterns, and principal component analysis (PCA). Results Our results show that both MALDI-TOF MS and deconvolution of overlapping isotope patterns were able to identify the presence of A-type interflavan bonds with a probability greater than 90% and a confidence of 95%. Deconvolution of MALDI-TOF MS spectra also determined the ratio of A-type to B-type interflavan bonds at each degree of polymerization in cranberry fruit and cranberry products, which is a distinguishing feature of c-PAC in comparison to other botanical sources of PAC. PCA shows clear differences based on the nature of the interflavan bonds. Conclusions MALDI-TOF MS, deconvolution of overlapping isotope patterns of MALDI-TOF MS spectra, and PCA allow the identification, estimation, and differentiation of A-type interflavan bonds in cranberry-based foods and dietary supplements among other botanical sources containing mostly B-type interflavan bonds.

Funder

the Ministry of Science, Technology and Telecommunications

Innovation and Human Capital Program for Competitiveness

the National Council for Scientific and Technology Research

the University of Wisconsin, Department of Chemistry, Mass Spectrometry facility

Publisher

Oxford University Press (OUP)

Subject

Pharmacology,Agronomy and Crop Science,Environmental Chemistry,Food Science,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3