Framework for the architecture of exoplanetary systems

Author:

Mishra LokeshORCID,Alibert YannORCID,Udry StéphaneORCID,Mordasini ChristophORCID

Abstract

In the first paper of this series, we proposed a model-independent framework for characterising the architecture of planetary systems at the system level. There are four classes of planetary system architecture: similar, mixed, anti-ordered, and ordered. In this paper, we investigate the formation pathways leading to these four architecture classes. To understand the role of nature versus nurture in sculpting the final (mass) architecture of a system, we apply our architecture framework to synthetic planetary systems – formed via core-accretion – using the Bern model. General patterns emerge in the formation pathways of the four architecture classes. Almost all planetary systems emerging from protoplanetary disks whose initial solid mass was less than one Jupiter mass are similar. Systems emerging from heavier disks may become mixed, anti-ordered, or ordered. Increasing dynamical interactions (planet–planet, planet–disk) tends to shift a system’s architecture from mixed to anti-ordered to ordered. Our model predicts the existence of a new metallicity–architecture correlation. Similar systems have very high occurrence around low-metallicity stars. The occurrence of the anti-ordered and ordered classes increases with increasing metallicity. The occurrence of mixed architecture first increases and then decreases with increasing metallicity. In our synthetic planetary systems, the role of nature is disentangled from the role of nurture. Nature (or initial conditions) pre-determines whether the architecture of a system becomes similar; otherwise nurture influences whether a system becomes mixed, anti-ordered, or ordered. We propose the ‘Aryabhata formation scenario’ to explain some planetary systems which host only water-rich worlds. We finish this paper with a discussion of future observational and theoretical works that may support or refute the results of this paper.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3