GJ 357 d: Potentially Habitable World or Agent of Chaos?

Author:

Kane Stephen R.ORCID,Fetherolf TaraORCID

Abstract

Abstract Multiplanet systems provide important laboratories for exploring dynamical interactions within the range of known exoplanetary system architectures. One such system is GJ 357, consisting of a low-mass host star and three orbiting planets, the outermost (planet d) of which does not transit but lies within the habitable zone (HZ) of the host star. The minimum mass of planet d causes its nature to be unknown, both in terms of whether it is truly terrestrial and if it is a candidate for harboring surface liquid water. Here, we use three sectors of photometry from the Transiting Exoplanet Survey Satellite to show that planets c and d do not transit the host star, and therefore may have masses higher than the derived minimum masses. We present the results for a suite of dynamical simulations that inject an Earth-mass planet within the HZ of the system for three different orbital and mass configurations of planet d. These results show that planet d, rather than being a potentially habitable planet, is likely a source of significant orbital instability for other potential terrestrial planets within the HZ. We find that relatively small eccentricities of planet d cause a majority of the HZ to be unstable for an Earth-mass planet. These results highlight the importance of dynamical stability for systems that are prioritized in the context of planetary habitability.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3