Surrounded by Giants: Habitable Zone Stability Within the HD 141399 System

Author:

Kane Stephen R.ORCID

Abstract

Abstract The search for exoplanets has revealed a diversity of planetary system architectures, the vast majority of which diverge significantly from the template of the solar system. In particular, giant planets beyond the snow line are relatively rare, especially for low-mass stars, placing the solar system within a small category of systems with multiple giant planets at large separations. An exoplanetary system of note is that of HD 141399, consisting of a K-dwarf host star that harbors four giant planets with separations extending to ∼4.5 au. The architecture of the system creates a complex pattern of mean motion resonances and gravitationally perturbed regions that may exclude the presence of other planets, including within the habitable zone of the system. Here, we present the results of dynamical simulations that explore the interaction of the known planets of the system, their apsidal trajectories, resonance locations, and dynamical evolution. We further investigate the results of injecting Earth-mass planets and provide the regions of dynamical viability within the habitable zone where terrestrial planets may maintain long-term stability. We discuss these results in the context of the importance of giant planets for volatile delivery and planetary habitability considerations.

Publisher

American Astronomical Society

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3