Revisiting mass–radius relationships for exoplanet populations: a machine learning insight

Author:

Mousavi-Sadr M1ORCID,Jassur D M1,Gozaliasl G23ORCID

Affiliation:

1. Faculty of Physics, Department of Theoretical Physics and Astrophysics, University of Tabriz , 5166616471, Tabriz , Iran

2. Department of Computer Science, Aalto University , P.O. Box 15400, FI-00076 Espoo , Finland

3. Department of Physics, University of Helsinki , P.O. Box 64, FI-00014 Helsinki , Finland

Abstract

ABSTRACT The growing number of exoplanet discoveries and advances in machine learning techniques have opened new avenues for exploring and understanding the characteristics of worlds beyond our Solar system. In this study, we employ efficient machine learning approaches to analyse a data set comprising 762 confirmed exoplanets and eight Solar system planets, aiming to characterize their fundamental quantities. By applying different unsupervised clustering algorithms, we classify the data into two main classes: ‘small’ and ‘giant’ planets, with cut-off values at Rp = 8.13R⊕ and Mp = 52.48M⊕. This classification reveals an intriguing distinction: giant planets have lower densities, suggesting higher H–He mass fractions, while small planets are denser, composed mainly of heavier elements. We apply various regression models to uncover correlations between physical parameters and their predictive power for exoplanet radius. Our analysis highlights that planetary mass, orbital period, and stellar mass play crucial roles in predicting exoplanet radius. Among the models evaluated, the Support Vector Regression consistently outperforms others, demonstrating its promise for obtaining accurate planetary radius estimates. Furthermore, we derive parametric equations using the M5P and Markov Chain Monte Carlo methods. Notably, our study reveals a noteworthy result: small planets exhibit a positive linear mass–radius relation, aligning with previous findings. Conversely, for giant planets, we observe a strong correlation between planetary radius and the mass of their host stars, which might provide intriguing insights into the relationship between giant planet formation and stellar characteristics.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3