Planetary population synthesis and the emergence of four classes of planetary system architectures

Author:

Emsenhuber AlexandreORCID,Mordasini Christoph,Burn Remo

Abstract

AbstractPlanetary population synthesis is a helpful tool to understand the physics of planetary system formation. It builds on a global model, meaning that the model has to include a multitude of physical processes. The outcome can be statistically compared with exoplanet observations. Here, we review the population synthesis method and then use one population computed using the Generation III Bern model to explore how different planetary system architectures emerge and which conditions lead to their formation. The emerging systems can be classified into four main architectures: Class I of near in situ compositionally ordered terrestrial and ice planets, Class II of migrated sub-Neptunes, Class III of mixed low-mass and giant planets, broadly similar to the Solar System, and Class IV of dynamically active giants without inner low-mass planets. These four classes exhibit distinct typical formation pathways and are characterised by certain mass scales. We find that Class I forms from the local accretion of planetesimals followed by a giant impact phase, and the final planet masses correspond to what is expected from such a scenario, the ‘Goldreich mass’. Class II, the migrated sub-Neptune systems form when planets reach the ‘equality mass’ where accretion and migration timescales are comparable before the dispersal of the gas disc, but not large enough to allow for rapid gas accretion. Giant planets form when the ‘equality mass’ allows for gas accretion to proceed while the planet is migrating, i.e. when the critical core mass is reached. The main discriminant of the four classes is the initial mass of solids in the disc, with contributions from the lifetime and mass of the gas disc. The distinction between mixed Class III systems and Class IV dynamically active giants is in part due to the stochastic nature of dynamical interactions, such as scatterings between giant planets, rather than the initial conditions only. The breakdown of system into classes allows to better interpret the outcome of a complex model and understand which physical processes are dominant. Comparison with observations reveals differences to the actual population, pointing at limitation of theoretical understanding. For example, the overrepresentation of synthetic super-Earths and sub-Neptunes in Class I systems causes these planets to be found at lower metallicities than in observations.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Deutsche Forschungsgemeinschaft

Ludwig-Maximilians-Universität München

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,Fluid Flow and Transfer Processes

Reference172 articles.

1. W.J. Borucki, D. Koch, G. Basri, N. Batalha, T. Brown, D. Caldwell, J. Caldwell, J. Christensen-Dalsgaard, W.D. Cochran, E. DeVore, E.W. Dunham, A.K. Dupree, T.N. Gautier, J.C. Geary, R. Gilliland, A. Gould, S.B. Howell, J.M. Jenkins, Y. Kondo, D.W. Latham, G.W. Marcy, S. Meibom, H. Kjeldsen, J.J. Lissauer, D.G. Monet, D. Morrison, D. Sasselov, J. Tarter, A. Boss, D. Brownlee, T. Owen, D. Buzasi, D. Charbonneau, L. Doyle, J. Fortney, E.B. Ford, M.J. Holman, S. Seager, J.H. Steffen, W.F. Welsh, J. Rowe, H. Anderson, L. Buchhave, D. Ciardi, L. Walkowicz, W. Sherry, E. Horch, H. Isaacson, M.E. Everett, D. Fischer, G. Torres, J.A. Johnson, M. Endl, P. MacQueen, S.T. Bryson, J. Dotson, M. Haas, J. Kolodziejczak, J. Van Cleve, H. Chandrasekaran, J.D. Twicken, E.V. Quintana, B.D. Clarke, C. Allen, J. Li, H. Wu, P. Tenenbaum, E. Verner, F. Bruhweiler, J. Barnes, A. Prsa, Kepler planet-detection mission: introduction and first results. Science 327(5968), 977 (2010)

2. M. Mayor, M. Marmier, C. Lovis, S. Udry, D. Ségransan, F. Pepe, W. Benz, J.L. Bertaux, F. Bouchy, X. Dumusque, G. Lo Curto, C. Mordasini, D. Queloz, N.C. Santos, The HARPS search for southern extra-solar planets XXXIV. Occurrence, mass distribution and orbital properties of super-Earths and Neptune-mass planets. arXiv:1109.2497 (2011)

3. A.W. Howard, J.A. Johnson, G.W. Marcy, D.A. Fischer, J.T. Wright, D. Bernat, G.W. Henry, K.M.G. Peek, H. Isaacson, K. Apps, M. Endl, W.D. Cochran, J.A. Valenti, J. Anderson, N.E. Piskunov, The California planet survey I. Four new giant exoplanets. ApJ 721(2), 1467–1481 (2010a)

4. L.J. Rosenthal, B.J. Fulton, L.A. Hirsch, H.T. Isaacson, A.W. Howard, C.M. Dedrick, I.A. Sherstyuk, S.C. Blunt, E.A. Petigura, H.A. Knutson, A. Behmard, A. Chontos, J.R. Crepp, I.J.M. Crossfield, P.A. Dalba, D.A. Fischer, G.W. Henry, S.R. Kane, M. Kosiarek, G.W. Marcy, R.A. Rubenzahl, L.M. Weiss, J.T. Wright, The California legacy survey. I. A catalog of 178 planets from precision radial velocity monitoring of 719 nearby stars over three decades. ApJS 255(1), 8 (2021)

5. M. Mayor, D. Queloz, A Jupiter-mass companion to a solar-type star. Nature 378(6555), 355–359 (1995)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3