Accretion of primordial H–He atmospheres in mini-Neptunes: The importance of envelope enrichment

Author:

Mol Lous M.ORCID,Mordasini C.ORCID,Helled R.ORCID

Abstract

Context. Out of the more than 5000 detected exoplanets, a considerable number belong to a category called “mini-Neptunes”. Interior models of these planets suggest that they have primordial H–He-dominated atmospheres. As this type of planet is not found in the Solar System, understanding their formation is a key challenge in planet formation theory. Unfortunately, quantifying how much H–He planets have, based on their observed mass and radius, is impossible due to the degeneracy of interior models. Aims. Another approach to estimating the range of possible primordial envelope masses is to use formation theory. As different assumptions in planet formation can heavily influence the nebular gas accretion rate of small planets, it is unclear how large the envelope of a protoplanet should be. We explore the effects that different assumptions regarding planet formation have on the nebular gas accretion rate, particularly by exploring the way in which solid material interacts with the envelope. This allows us to estimate the range of possible post-formation primordial envelopes. Thereby, we demonstrate the impact of envelope enrichment on the initial primordial envelope, which can be used in evolution models. Methods. We applied formation models that include different solid accretion rate prescriptions. Our assumption is that mini-Neptunes form beyond the ice line and migrate inward after formation; thus, we formed planets in situ at 3 and 5 au. We considered that the envelope can be enriched by the accreted solids in the form of water. We studied how different assumptions and parameters influence the ratio between the planet’s total mass and the fraction of primordial gas. Results. The primordial envelope fractions for low- and intermediate-mass planets (total mass below 15 M) can range from 0.1% to 50%. Envelope enrichment can lead to higher primordial mass fractions. We find that the solid accretion rate timescale has the largest influence on the primordial envelope size. Conclusions. Rates of primordial gas accretion onto small planets can span many orders of magnitude. Planet formation models need to use a self-consistent gas accretion prescription.

Funder

nccr planets

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3