Interior–atmosphere modelling to assess the observability of rocky planets with JWST

Author:

Acuña L.ORCID,Deleuil M.ORCID,Mousis O.ORCID

Abstract

Context. Super-Earths present compositions dominated by refractory materials. However, there is a degeneracy in their interior structure between a planet that has no atmosphere and a small Fe content, and a planet that has a thin atmosphere and a higher core mass fraction. To break this degeneracy, atmospheric characterisation observations are required. Aims. We present a self-consistent interior–atmosphere model to constrain the volatile mass fraction, surface pressure, and temperature of rocky planets with water and CO2 atmospheres. The parameters obtained in our analysis can be used to predict observations in emission spectroscopy and photometry with JWST, which can determine the presence of an atmosphere and, if present, its composition. Methods. We coupled a 1D interior model with a supercritical water layer to an atmospheric model. In order to obtain the bolometric emission and Bond albedo for an atmosphere in radiative-convective equilibrium, we used a low-resolution k-correlated atmospheric model. We generated emission spectra with the same atmospheric model at a higher resolution (R = 200–300). An adaptive Markov chain Monte Carlo was employed for an efficient sampling of the parameter space at low volatile mass fractions. Results. From our interior structure retrieval, we conclude that TRAPPIST-1 c most likely has a bare surface, although the presence of an atmosphere cannot be ruled out. We estimate a 1σ confidence interval of the surface pressure for a water-dominated atmosphere of Psurf = 40 ± 40 bar. We generated spectra for these two scenarios to compare with the emission flux of TRAPPIST-1 c recently observed in the MIRI F1500W filter. This is compatible with bare rock surfaces or a thin atmosphere with little or no CO2. In the case of 55 Cancri e, a combined spectrum with NIRCam and MIRI LRS may present high uncertainties at wavelengths between 3 and 3.7 µm. However, this does not affect the identification of H2O because it does not present spectral features in this wavelength range.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3