GASTLI

Author:

Acuña L.ORCID,Kreidberg L.,Zhai M.ORCID,Mollière P.

Abstract

The metal mass fractions of gas giants are a powerful tool for constraining their formation mechanisms and evolution. The metal content is inferred by comparing mass and radius measurements with interior structure and evolution models. In the midst of the JWST, CHEOPS, TESS, and the forthcoming PLATO era, we are at the brink of obtaining unprecedented precision in radius, age, and atmospheric metallicity measurements. To prepare for this wealth of data, we present the GAS gianT modeL for Interiors (GASTLI), an easy-to-use, publicly available Python package. The code is optimized to rapidly calculate mass-radius relations, and radius and luminosity thermal evolution curves for a variety of envelope compositions and core mass fractions. Its applicability spans planets with masses of 17 M < M < 6 MJup, and equilibrium temperatures of Teq < 1000 K. The interior model is stratified in a core composed of water and rock, and an envelope constituted by H/He and metals (water). The interior is coupled to a grid of self-consistent, cloud-free atmospheric models to determine the atmospheric and boundary interior temperature, as well as the contribution of the atmosphere to the total radius. We successfully validate GASTLI by comparing it to previous work and data of the gas giants of the Solar System and Neptune. We also test GASTLI on the Neptune-mass exoplanet HAT-P-26 b, finding a bulk metal mass fraction of between 0.60 and 0.78 and a core mass of 8.5–14.4 M. Finally, we explore the impact of different equations of state and assumptions, such as C/O ratio and transit pressure, in the estimation of bulk metal mass fraction. These differences between interior models entail a change in radius of up to 2.5% for Jupiter-mass planets, but of more than 10% for Neptune-mass. These are equivalent to variations in core mass fraction of 0.07, or 0.10 in envelope metal mass fraction.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3