Pairwise tidal equilibrium states and the architecture of extrasolar planetary systems

Author:

Adams Fred C12

Affiliation:

1. Physics Department, University of Michigan, Ann Arbor, MI 48109, USA

2. Astronomy Department, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

ABSTRACT Current observations indicate that the planet formation process often produces multiple planet systems with nearly circular orbits, regular spacing, a narrow range of inclination angles, and similar planetary masses of order mp ∼ 10 M⊕. Motivated by the observational sample, this paper determines the tidal equilibrium states for this class of extrasolar planetary systems. We start by considering two-planet systems with fixed orbital spacing and variable mass ratios. The basic conjecture explored in this paper is that the planet formation process will act to distribute planetary masses in order to achieve a minimum energy state. The resulting minimum energy configuration – subject to the constraint of constant angular momentum – corresponds to circular orbits confined to a plane, with nearly equal planetary masses (as observed). We then generalize the treatment to include multiple planet systems, where each adjacent pair of planets attains its (local) tidal equilibrium state. The properties of observed planetary systems are close to those expected from this pairwise equilibrium configuration. In contrast, observed systems do not reside in a global minimum energy state. Both the equilibrium states of this paper and observed multiplanet systems, with planets of nearly equal mass on regularly spaced orbits, have an effective surface density of the form σ ∝ r−2, much steeper than most disc models.

Publisher

Oxford University Press (OUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Earths Are Not Super-Earths, Saturns Are Not Jupiters: Imprints of Pressure-bump Planet Formation on Planetary Architectures;The Astrophysical Journal Letters;2024-02-01

2. Two Warm Super-Earths Transiting the Nearby M Dwarf TOI-2095;The Astronomical Journal;2023-10-16

3. Orbital architectures of Kepler multis from dynamical instabilities;Monthly Notices of the Royal Astronomical Society;2023-09-28

4. Intra-system uniformity: a natural outcome of dynamical sculpting;Monthly Notices of the Royal Astronomical Society: Letters;2023-07-04

5. Inner Planetary System Gap Complexity is a Predictor of Outer Giant Planets;The Astronomical Journal;2023-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3