Low density of interface trap states and temperature dependence study of Ga2O3 Schottky barrier diode with p-NiOx termination

Author:

Yan Qinglong1ORCID,Gong Hehe2,Zhou Hong1ORCID,Zhang Jincheng1,Ye Jiandong2ORCID,Liu Zhihong1,Wang Chenlu1ORCID,Zheng Xuefeng1ORCID,Zhang Rong2,Hao Yue1

Affiliation:

1. State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China

2. School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China

Abstract

This work acquires a vertical β-Ga2O3 Schottky barrier diode (SBD) with the advanced termination structure of p-type NiOx and n-type β-Ga2O3 heterojunctions and coupled field plate structures to alleviate the crowding electric field. A Ga2O3 SBD delivers an average breakdown voltage of 1860 V and a specific on-resistance of 3.12 mΩ cm2, yielding a state-of-the-art direct-current Baliga's power figure of merit of 1.11 GW/cm2 at an anode area of 2.83 × 10−5 cm2. In addition, the Ga2O3 SBD with the same fabrication process at a large area of 1.21 × 10−2 cm2 also presents a high forward current of 7.13 A, a breakdown voltage of 1260 V, and a power figure-of-merit of 235 MW/cm2. According to dynamic pulse switching and capacitance-frequency characteristics, an optimized p-NiOx/Ga2O3 interface with a maximum trap density of 4.13 × 1010 eV−1 cm−2 is delivered. Moreover, based on the forward current-voltage measurement at various temperatures, the physics behind a forward conduction mechanism is illustrated. Ga2O3 SBDs with p-NiOx/n-Ga2O3 heterojunction termination, field plate, high power figure of merit, and high quality interface as well as suppressed resistance increase after dynamic pulse switching, verifying their great promise for future high power applications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities and the Innovation Fund of Xidian University

Shanxi Provincial Natural Science Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3