Understanding the factors affecting contact resistance in nanowire field effect transistors (NWFETs) to improve nanoscale contacts for future scaling

Author:

Ramesh S.12ORCID,Ivanov Ts.2ORCID,Sibaja-Hernandez A.2ORCID,Alian A.2,Camerotto E.3,Milenin A.2,Pinna N.2ORCID,El Kazzi S.2ORCID,Lin D.2,Lagrain P.2,Favia P.2,Bender H.2,Collaert N.2,De Meyer K.12

Affiliation:

1. KU Leuven, ESAT, Kasteelpark Arenberg 10, 3001 Leuven, Belgium

2. IMEC, Kapeldreef 75, 3001 Leuven, Belgium

3. Lam Research Belgium, Kapeldreef 75, 3001 Leuven, Belgium

Abstract

In this paper, dry etched vertical nanowires (VNWs) are used in transmission line/transfer length analysis to study the contacts of gate-all-around devices for future technology nodes. VNW resistors with Mo and Pd based metal stack contacts to p-InGaAs show Schottky behavior, unlike the planar counterpart. The resistance for Mo contact is higher than Pd, however, Pd was found to form an alloy with InGaAs at temperatures as low as 190 °C, and the length of Pd diffusion into the InGaAs increased at smaller NW dimensions, hindering future scalability. The minimum extracted specific contact resistivity ( ρC) values are 1.6 × 10−5 Ω cm2 (Mo) and 4.2 × 10−6 Ω cm2 (Pd) for a doping level of 1 × 1019 cm−3. An apparent dependence of ρC on the NW diameter was also observed. This has been attributed to the surface states under the un-gated region of NW devices and found to dominate at smaller diameters. An analytical model to account for such geometrical effects has also been developed and validated with technology computer-aided design simulations. The analysis presented in this paper effectively captures the 3D aspects of an NW contact at nanoscale dimensions and can be applied irrespective of the semiconductor and contact metal used.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Reference56 articles.

1. High-Performance InAs Gate-All-Around Nanowire MOSFETs on 300 mm Si Substrates

2. N. Waldron, S. Sioncke, J. Franco, L. Nyns, A. Vais, X. Zhou, H. C. Lin, G. Boccardi, J. W. Maes, Q. Xie, M. Givens, F. Tang, X. Jiang, E. Chiu, A. Opdebeeck, C. Merckling, F. Sebaai, D. van Dorp, L. Teugels, A. S. Hernandez, K. D. Meyer, K. Barla, N. Collaert, and Y. V. Thean, “Gate-all-around InGaAs nanowire FETS with peak transconductance of 2200 μS/μm at 50 nm Lg using a replacement Fin RMG flow,” in 2015 IEEE International Electron Devices Meeting (IEDM) (IEEE, 2015), pp. 31.1.1–31.1.4.

3. X. Zhou, N. Waldron, G. Boccardi, F. Sebaai, C. Merckling, G. Eneman, S. Sioncke, L. Nyns, A. Opdebeeck, J. W. Maes, Q. Xie, M. Givens, F. Tang, X. Jiang, W. Guo, B. Kunert, L. Teugels, K. Devriendt, A. S. Hernandez, J. Franco, D. van Dorp, K. Barla, N. Collaert, and A. V. Y. Thean, “Scalability of InGaAs gate-all-around FET integrated on 300 mm Si platform: Demonstration of channel width down to 7 nm and Lg down to 36nm,” in 2016 IEEE Symposium on VLSI Technology (IEEE, 2016), pp. 1–2.

4. H. Mertens, R. Ritzenthaler, H. Arimura, J. Franco, F. Sebaai, A. Hikavyy, B. J. Pawlak, V. Machkaoutsan, K. Devriendt, D. Tsvetanova, A. P. Milenin, L. Witters, A. Dangol, E. Vancoille, H. Bender, M. Badaroglu, F. Holsteyns, K. Barla, D. Mocuta, N. Horiguchi, and A. V. Y. Thean, “Si-cap-free SiGe p-channel FinFETs and gate-all-around transistors in a replacement metal gate process: Interface trap density reduction and performance improvement by high-pressure deuterium anneal,” in 2015 Symposium on VLSI Technology (VLSI Technology) (IEEE, 2015), pp. T142–T143.

5. L. Witters, J. Mitard, R. Loo, S. Demuynck, S. A. Chew, T. Schram, Z. Tao, A. Hikavyy, J. W. Sun, A. P. Milenin, H. Mertens, C. Vrancken, P. Favia, M. Schaekers, H. Bender, N. Horiguchi, R. Langer, K. Barla, D. Mocuta, N. Collaert, and A. V. Y. Thean, “Strained germanium quantum well p-FinFETs fabricated on 45 nm Fin pitch using replacement channel, replacement metal gate and germanide-free local interconnect,” in 2015 Symposium on VLSI Technology (VLSI Technology) (IEEE, 2015), pp. T56–T57.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3