Doping effects on the ferroelectric properties of wurtzite nitrides

Author:

Liu Zhijie12ORCID,Wang Xinyu12,Ma Xingyue12ORCID,Yang Yurong12ORCID,Wu Di12ORCID

Affiliation:

1. National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Department of Materials Science and Engineering, Nanjing University 1 , Nanjing 210093, China

2. Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University 2 , Nanjing 210093, China

Abstract

Ferroelectric materials have been explored for a long time for easy integration with state-of-the-art semiconductor technologies. Doped wurtzite nitrides have been reported as promising candidates due to their high stability, compatibility, and scalability. We investigate doping effects on ferroelectric properties of Sc-doped AlN (AlScN) and B-doped AlN (AlBN) by first-principles methods. The energy barrier against polarization switching is observed to decrease with increasing doping concentration at low concentration ranges, which is the origin of the emerging ferroelectricity in doped AlN. Further increasing the doping concentration to a critical value, the ferroelectric wurtzite phase transforms into paraelectric phases (a rock salt phase for AlScN and a zinc blende phase for AlBN), making it invalid to decrease the coercivity by increasing the doping concentration. Furthermore, it is revealed that different nonpolar structures (a hexagonal phase for AlScN and a β-BeO phase for AlBN) appear in the ferroelectric switching pathway, generating different switching features in doped AlN. Our results give a microscopic understanding of the ferroelectricity in doped wurtzite materials and broaden the route to improve their ferroelectric properties.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3