Quadruple-well ferroelectricity and moderate switching barrier in defective wurtzite α-Al2S3: a first-principles study

Author:

Akamatsu Hirofumi1,Shimomura Yuto1,Ohno Saneyuki2,Hayashi Katsuro1

Affiliation:

1. Kyushu University

2. Tohoku Universuty

Abstract

Abstract

Wurtzite-type ferroelectrics are highly promising for next-generation microelectronic devices due to their ferroelectric properties and integration with exiting semiconductors. However, their high coercive fields, which are close to breakdown electric fields, need to be lowered. To deal with this issue and secure device reliability, much effort has been devoted to exploring novel wurtzite compounds with lower polarization switching barriers and implementing doping strategies. Here, we report first-principles calculations on polarization switching in cation-vacancy ordered wurtzite α-Al2S3, unveiling its uniaxial quadruple-well ferroelectricity and moderate switching barrier, 51 meV/cation, which is much lower than that of conventional wurtzite ferroelectrics. There are three important features relevant to the Al vacancies leading to the uncommon quadruple-well ferroelectricity and the moderate switching barrier: mitigation of cation-cation repulsion, structural flexibility that alleviates an in-plane lattice expansion, and formation of s-like bonding states consisting of Al 3pz and S 3pz orbitals. Biaxial compressive strain and Ga doping lower the switching barriers by up to 40%. This study encourages experimental investigation of the ferroelectric properties for defective wurtzite α-Al2S3 as a new promising material with unconventional and intriguing ferroelectricity and suggests a potential strategy for reducing switching barriers in wurtzite ferroelectrics: introducing cation vacancies.

Publisher

Springer Science and Business Media LLC

Reference61 articles.

1. Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives;Kishi H;Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers,2003

2. Ferroelectric thin films: Review of materials, properties, and applications;Setter N;J Appl Phys,2006

3. Pyroelectric thin-film sensor array;Kohli M;Sens Actuators A Phys,1997

4. A III-V semiconductor based ferroelectric;Fichtner S;J Appl Phys,2019

5. Ferroelectricity in boron-substituted aluminum nitride thin films;Hayden J;Phys Rev Mater,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3