ReSe2-Based RRAM and Circuit-Level Model for Neuromorphic Computing

Author:

Huang Yifu,Gu Yuqian,Wu Xiaohan,Ge Ruijing,Chang Yao-Feng,Wang Xiyu,Zhang Jiahan,Akinwande Deji,Lee Jack C.

Abstract

Resistive random-access memory (RRAM) devices have drawn increasing interest for the simplicity of its structure, low power consumption and applicability to neuromorphic computing. By combining analog computing and data storage at the device level, neuromorphic computing system has the potential to meet the demand of computing power in applications such as artificial intelligence (AI), machine learning (ML) and Internet of Things (IoT). Monolayer rhenium diselenide (ReSe2), as a two-dimensional (2D) material, has been reported to exhibit non-volatile resistive switching (NVRS) behavior in RRAM devices with sub-nanometer active layer thickness. In this paper, we demonstrate stable multiple-step RESET in ReSe2 RRAM devices by applying different levels of DC electrical bias. Pulse measurement has been conducted to study the neuromorphic characteristics. Under different height of stimuli, the ReSe2 RRAM devices have been found to switch to different resistance states, which shows the potentiation of synaptic applications. Long-term potentiation (LTP) and depression (LTD) have been demonstrated with the gradual resistance switching behaviors observed in long-term plasticity programming. A Verilog-A model is proposed based on the multiple-step resistive switching behavior. By implementing the LTP/LTD parameters, an artificial neural network (ANN) is constructed for the demonstration of handwriting classification using Modified National Institute of Standards and Technology (MNIST) dataset.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3