High-Speed Hardware Architecture Based on Error Detection for KECCAK

Author:

Mestiri Hassen123ORCID,Barraj Imen145

Affiliation:

1. Department of Computer Engineering, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, Sousse 4002, Tunisia

3. Electronics and Micro-Electronics Laboratory, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia

4. Systems Integration & Emerging Energies (SI2E), Electrical Engineering Department, National Engineers School of Sfax, University of Sfax, Sfax 3029, Tunisia

5. Higher Institute of Computer Science and Multimedia of Gabes (ISIMG), University of Gabes, Gabes 6029, Tunisia

Abstract

The hash function KECCAK integrity algorithm is implemented in cryptographic systems to provide high security for any circuit requiring integrity and protect the transmitted data. Fault attacks, which can extricate confidential data, are one of the most effective physical attacks against KECCAK hardware. Several KECCAK fault detection systems have been proposed to counteract fault attacks. The present research proposes a modified KECCAK architecture and scrambling algorithm to protect against fault injection attacks. Thus, the KECCAK round is modified so that it consists of two parts with input and pipeline registers. The scheme is independent of the KECCAK design. Iterative and pipeline designs are both protected by it. To test the resilience of the suggested detection system approach fault attacks, we conduct permanent as well as transient fault attacks, and we evaluate the fault detection capabilities (99.9999% for transient faults and 99.999905% for permanent faults). The KECCAK fault detection scheme is modeled using VHDL language and implemented on an FPGA hardware board. The experimental results show that our technique effectively secures the KECCAK design. It can be carried out with little difficulty. In addition, the experimental FPGA results demonstrate the proposed KECCAK detection scheme’s low area burden, high efficiency and working frequency.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3