A Novel Hardware Architecture for Enhancing the Keccak Hash Function in FPGA Devices

Author:

Sideris Argyrios1ORCID,Sanida Theodora1ORCID,Dasygenis Minas1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Western Macedonia, 50131 Kozani, Greece

Abstract

Hash functions are an essential mechanism in today’s world of information security. It is common practice to utilize them for storing and verifying passwords, developing pseudo-random sequences, and deriving keys for various applications, including military, online commerce, banking, healthcare management, and the Internet of Things (IoT). Among the cryptographic hash algorithms, the Keccak hash function (also known as SHA-3) stands out for its excellent hardware performance and resistance to current cryptanalysis approaches compared to algorithms such as SHA-1 and SHA-2. However, there is always a need for hardware enhancements to increase the throughput rate and decrease area consumption. This study specifically focuses on enhancing the throughput rate of the Keccak hash algorithm by presenting a novel architecture that supplies efficient outcomes. This novel architecture achieved impressive throughput rates on Field-Programmable Gate Array (FPGA) devices with the Virtex-5, Virtex-6, and Virtex-7 models. The highest throughput rates obtained were 26.151 Gbps, 33.084 Gbps, and 38.043 Gbps, respectively. Additionally, the research paper includes a comparative analysis of the proposed approach with recently published methods and shows a throughput rate above 11.37% Gbps in Virtex-5, 10.49% Gbps in Virtex-6 and 11.47% Gbps in Virtex-7. This comparison allows for a comprehensive evaluation of the novel architecture’s performance and effectiveness in relation to existing methodologies.

Publisher

MDPI AG

Subject

Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancing Cryptographic Security: A Study on SHA-3 Implementation within CRYSTAL-KYBER Key-Encapsulation Mechanism Hardware;2024 Tenth International Conference on Communications and Electronics (ICCE);2024-07-31

2. A multimode SHA-3 accelerator based on RISC-V system;IEICE Electronics Express;2024-06-10

3. Low Cost Implementation of Authenticated Encryption Using Spongift;Wireless Personal Communications;2024-06

4. Comparative Study of Keccak SHA-3 Implementations;Cryptography;2023-11-20

5. Accelerate Processing of Image with the Keccak-512 Algorithm on Cryptoprocessor;2023 8th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM);2023-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3