An ASCON AOP-SystemC Environment for Security Fault Analysis

Author:

Mestiri Hassen123ORCID,Barraj Imen145,Bedoui Mouna3,Machhout Mohsen3

Affiliation:

1. Department of Computer Engineering, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. Higher Institute of Applied Sciences and Technology of Sousse, University of Sousse, Sousse 4002, Tunisia

3. Electronics and Micro-Electronics Laboratory, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia

4. Systems Integration & Emerging Energies (SI2E), Electrical Engineering Department, National Engineers School of Sfax, University of Sfax, Sfax 3029, Tunisia

5. Higher Institute of Computer Science and Multimedia of Gabes (ISIMG), University of Gabes, Gabes 6029, Tunisia

Abstract

Cryptographic devices’ complexity necessitates fast security simulation environments against fault attacks. SystemC, a promising candidate in Electronic System Levels (ESLs), can achieve higher simulation speeds while maintaining accuracy and reliability, and its modular and hierarchical design allows for efficient modeling of complex cryptographic algorithms and protocols. However, code modification is required for fault injection and detection. Aspect-Oriented Programming (AOP) can test cryptographic models’ robustness without modifications, potentially replacing real cryptanalysis schemes and reducing the time and effort required for fault injection and detection. Through the utilization of a fault injection/detection environment, this paper presents a novel approach to simulating the security fault attacks of ASCON cryptographic systems at the ESL. The purpose of this methodology is to evaluate the resistance of ASCON SystemC models against fault attacks. The proposed methodology leverages the advantages of AOP to enhance the fault injection and detection process. By applying AOP techniques, we inject faults into the SystemC models without making any changes to the main codebase. This approach not only improves the efficiency of testing cryptographic systems but also ensures that the main functionality remains intact during the fault injection process. The methodology was validated using three scenarios and SystemC ASCON as a case study. The first simulation involved evaluating fault detection capabilities, the second focused on the impact of AOP on executable file size and simulation time, and the third focused on the ESL impact on the ASCON design process. Simulation results show that this methodology can perfectly evaluate the robustness of the ASCON design against fault injection attacks with no significant impact on simulation time and file executable size. Additionally, the simulation results prove that the ASCON development life cycle at the ESL reduces the amount of time devoted to the design procedure by 83.34%, and the ASCON security attack simulations at the ESL decrease the simulation time by 40% compared to the register transfer level (RTL).

Funder

Prince Sattam Bin Abdulaziz University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3