A Combination of Real-World Experiments and Augmented Reality When Learning about the States of Wax—An Eye-Tracking Study

Author:

Syskowski Sabrina12ORCID,Huwer Johannes12ORCID

Affiliation:

1. Chair Science Education, Department of Chemistry, University of Konstanz, 78464 Konstanz, Germany

2. Chair Science Education, Thurgau University of Education, 8280 Kreuzlingen, Switzerland

Abstract

Burning candles show the solid and liquid states of wax on a macroscopic level. With augmented reality, the submicroscopic and symbolic level of all three states of wax can be shown. The augmented reality environment developed in this study lets students test their knowledge about the position of the three states of wax. So far, how the design parameters of augmented reality learning environments influence users’ eye movement and learning performance has not been researched. Twenty-three German students between the ages of 9 and 15 form the randomized sample of this study with three different groups. AR learning scenarios were created, varying only in one design parameter: ‘congruence with reality’. Our analysis using audio, video, and eye-tracking data showed that all the participants learned mostly the same and that the participants who saw the real experiment on screen experienced the highest degree of immersion. This study indicates that the presented AR learning environment is an opportunity to learn about what exact part of a candle is burning with the submicroscopic level shown in comparison; before using the learning environment, the students were uncertain about what substance burns when a candle is lit and what function the wick has. This study suggests teachers should think about implementing learning environments such as this to help students connect different levels of representation.

Publisher

MDPI AG

Subject

Public Administration,Developmental and Educational Psychology,Education,Computer Science Applications,Computer Science (miscellaneous),Physical Therapy, Sports Therapy and Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3