Minimizing the Duration of Repetitive Construction Processes with Work Continuity Constraints

Author:

Jaśkowski PiotrORCID,Biruk Sławomir

Abstract

This study adopts the flow shop concept used in industrial production to schedule repetitive non-linear construction projects, where specialized groups of workers execute processes in work zones (buildings) in a predefined order common to all groups. This problem is characteristic of construction projects that involve erecting multiple buildings. As the duration of the project heavily depends upon the sequence of the work zones, this study aims at providing a model and a practical approach for finding the optimal solution that assures the shortest duration of the project, allows the contractor to complete particular work zones (buildings) as soon as possible (without idle time), and conforms to a predefined sequence of work zone completion. This last constraint may arise from the client’s requirements or physical conditions of the project and has not been addressed by existing scheduling methods. Reducing the duration of the entire project brings the benefit of lower indirect costs and, if accompanied by a reduced duration of completing particular buildings (i.e., work zones), may also provide the opportunity to sell project deliverables sooner, thus improving the economic efficiency of the project. In search of optimal schedules, the authors apply the algorithms of Minimum Hamiltonian Cycle/Asymmetric Traveling Salesman Problem (ATSP).

Funder

Ministry of Science and Higher Education in Poland

Publisher

MDPI AG

Subject

Applied Mathematics,Modelling and Simulation,General Computer Science,Theoretical Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3