Effect of Doping Different Cu Valence States in HfO2 on Resistive Switching Properties of RRAM

Author:

Yang Jin,Chen JunORCID,Hong Yingzheng

Abstract

Metal dopants are important for HfO2-based resistive switching mechanisms in resistive random-access memory (RRAM) because they can improve the performance of RRAM devices. Although Cu ions have been widely explored as metal dopants, Cu dopants with different valence states have received little attention. Using the first principles method and the Vienna ab initio simulation package (VASP), the effect of electron gain or loss in different doped Cu states in hafnium oxide (HfO2) was investigated. The electron affinity, defect formation energy, and charge density difference suggest that Cu doping results in a loss of electrons, thereby stabilizing the system. The population, the isosurface of partial charge density, and the migration barrier of the Cu-doped systems with different ionic valence states (+2 and 0) were calculated. Furthermore, the impact of doping ions on the formation of conductive filaments and the stability of the system were investigated in this study. The results indicate that the average population of the Cu-doped (+2) system is smaller than that of the Cu (0) system, and the Cu-O bond length increases in the Cu-doped (+2) system. At the same isosurface level, the electronic local clusters in the Cu (+2) system are stable; however, by increasing the isosurface level, the conductive filament of the Cu (0) system breaks first. At the same starting and ending positions, the migration barrier of the Cu (+2) system was much lower. In the transition state of the Cu (+2) system, the number of atoms whose atomic structure changes by more than 0.1 Å is lower than that in the Cu (0) system, which has a relatively small displacement deviation. This study, which indicates that the Cu (+2) system helps to form conductive channels upon applying current or voltage, can provide theoretical guidance for preparing RRAM and improving its performance.

Funder

Research Foundation of the Education Bureau of Anhui Province, China

Deutsche Forschungsgemeinschaft

Australian Research Council

Publisher

MDPI AG

Subject

Inorganic Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3