Microstructures of HfOx Films Prepared via Atomic Layer Deposition Using La(NO3)3·6H2O Oxidants

Author:

Kim Seon YongORCID,Jung Yong ChanORCID,Seong Sejong,Lee Taehoon,Park In-Sung,Ahn JinhoORCID

Abstract

Hafnium oxide (HfOx) films have a wide range of applications in solid-state devices, including metal–oxide–semiconductor field-effect transistors (MOSFETs). The growth of HfOx films from the metal precursor tetrakis(ethylmethylamino) hafnium with La(NO3)3·6H2O solution (LNS) as an oxidant was investigated. The atomic layer deposition (ALD) conditions were optimized, and the chemical state, surface morphology, and microstructure of the prepared films were characterized. Furthermore, to better understand the effects of LNS on the deposition process, HfOx films deposited using a conventional oxidant (H2O) were also prepared. The ALD process using LNS was observed to be self-limiting, with an ALD temperature window of 200–350 °C and a growth rate of 1.6 Å per cycle, two times faster than that with H2O. HfOx films deposited using the LNS oxidant had smaller crystallites than those deposited using H2O, as well as more suboxides or defects because of the higher number of grain boundaries. In addition, there was a difference in the preferred orientations of the HfOx films deposited using LNS and H2O, and consequently, a difference in surface energy. Finally, a film growth model based on the surface energy difference was proposed to explain the observed growth rate and crystallite size trends.

Funder

National Research Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3