Phase Transformations Driving Biaxial Stress Reduction During Wake‐Up of Ferroelectric Hafnium Zirconium Oxide Thin Films

Author:

Jaszewski Samantha T.12ORCID,Fields Shelby S.1ORCID,Calderon Sebastian3ORCID,Aronson Benjamin L.1ORCID,Beechem Thomas E.4ORCID,Kelley Kyle P.5ORCID,Zhang Casey1,Lenox Megan K.1ORCID,Brummel Ian A.1ORCID,Dickey Elizabeth C.3ORCID,Ihlefeld Jon F.16ORCID

Affiliation:

1. Department of Materials Science and Engineering University of Virginia Charlottesville VA 22904 USA

2. Sandia National Laboratories Albuquerque NM 87185 USA

3. Department of Materials Science and Engineering Carnegie Mellon University Pittsburgh PA 15213 USA

4. School of Mechanical Engineering and Birck Nanotechnology Center Purdue University West Lafayette IN 47907 USA

5. Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA

6. Charles L. Brown Department of Electrical and Computer Engineering University of Virginia Charlottesville VA 22904 USA

Abstract

AbstractBiaxial stress is identified to play an important role in the polar orthorhombic phase stability in hafnium oxide‐based ferroelectric thin films. However, the stress state during various stages of wake‐up has not yet been quantified. In this work, the stress evolution with field cycling in hafnium zirconium oxide capacitors is evaluated. The remanent polarization of a 20 nm thick hafnium zirconium oxide thin film increases from 9.80 to 15.0 µC cm−2 following 106 field cycles. This increase in remanent polarization is accompanied by a decrease in relative permittivity that indicates that a phase transformation has occurred. The presence of a phase transformation is supported by nano‐Fourier transform infrared spectroscopy measurements and scanning transmission electron microscopy that show an increase in ferroelectric phase content following wake‐up. The stress of individual devices field cycled between pristine and 106 cycles is quantified using the sin2(ψ) technique, and the biaxial stress is observed to decrease from 4.3 ± 0.2 to 3.2 ± 0.3 GPa. The decrease in stress is attributed, in part, to a phase transformation from the antipolar Pbca phase to the ferroelectric Pca21 phase. This work provides new insight into the mechanisms controlling and/or accompanying polarization wake‐up in hafnium oxide‐based ferroelectrics.

Publisher

Wiley

Reference75 articles.

1. Ferroelectricity in hafnium oxide thin films

2. Phase transitions in ferroelectric silicon doped hafnium oxide

3. Ferroelectric Zr0.5Hf0.5O2thin films for nonvolatile memory applications

4. Ten-Nanometer Ferroelectric $\hbox{Si:HfO}_{2}$ Films for Next-Generation FRAM Capacitors

5. C.Mart A.Viegas S.Esslinger M.Czernohorsky W.Weinreich D.Mutschall A.Kaiser N.Neumann T.Grossmann K.Hiller L. M.Eng In2020 Joint Conf. of the IEEE Int. Frequency Control Symposium and Int. Symp. on Applications of Ferroelectrics (IFCS‐ISAF) IEEE Keystone CO USA2020 pp.1–3.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3