Scaling the bandwidth wall

Author:

Rogers Brian M.1,Krishna Anil2,Bell Gordon B.2,Vu Ken2,Jiang Xiaowei1,Solihin Yan1

Affiliation:

1. North Carolina State University, Raleigh, NC, USA

2. IBM, Research Triangle Park, NC, USA

Abstract

As transistor density continues to grow at an exponential rate in accordance to Moore's law, the goal for many Chip Multi-Processor (CMP) systems is to scale the number of on-chip cores proportionally. Unfortunately, off-chip memory bandwidth capacity is projected to grow slowly compared to the desired growth in the number of cores. This creates a situation in which each core will have a decreasing amount of off-chip bandwidth that it can use to load its data from off-chip memory. The situation in which off-chip bandwidth is becoming a performance and throughput bottleneck is referred to as the bandwidth wall problem. In this study, we seek to answer two questions: (1) to what extent does the bandwidth wall problem restrict future multicore scaling, and (2) to what extent are various bandwidth conservation techniques able to mitigate this problem. To address them, we develop a simple but powerful analytical model to predict the number of on-chip cores that a CMP can support given a limited growth in memory traffic capacity. We find that the bandwidth wall can severely limit core scaling. When starting with a balanced 8-core CMP, in four technology generations the number of cores can only scale to 24, as opposed to 128 cores under proportional scaling, without increasing the memory traffic requirement. We find that various individual bandwidth conservation techniques we evaluate have a wide ranging impact on core scaling, and when combined together, these techniques have the potential to enable super-proportional core scaling for up to 4 technology generations.

Publisher

Association for Computing Machinery (ACM)

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3