Metal–Organic Frameworks–Based Memristors: Materials, Devices, and Applications

Author:

Shu Fan,Chen Xinhui,Yu Zhe,Gao Pingqi,Liu Gang

Abstract

Facing the explosive growth of data, a number of new micro-nano devices with simple structure, low power consumption, and size scalability have emerged in recent years, such as neuromorphic computing based on memristor. The selection of resistive switching layer materials is extremely important for fabricating of high performance memristors. As an organic-inorganic hybrid material, metal-organic frameworks (MOFs) have the advantages of both inorganic and organic materials, which makes the memristors using it as a resistive switching layer show the characteristics of fast erasing speed, outstanding cycling stability, conspicuous mechanical flexibility, good biocompatibility, etc. Herein, the recent advances of MOFs-based memristors in materials, devices, and applications are summarized, especially the potential applications of MOFs-based memristors in data storage and neuromorphic computing. There also are discussions and analyses of the challenges of the current research to provide valuable insights for the development of MOFs-based memristors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference109 articles.

1. Data-Inntensive Applications, Challenges, Techniques and Tehnologies: A Surgey on Big Data;Chen;Inf. Sci.,2014

2. The Future of Electronics Based on Memristive Systems;Zidan;Nat. Electron.,2018

3. Reinsel, D., Gantz, J., and Rydning, J. (2018). The Digitization of the World from Edge to Core, International Data Corporation (IDC). IDC White Paper.

4. The End of Moore’s Law: A New Beginning for Information Technology;Theis;Comput. Sci. Eng.,2017

5. The End of Moore’s Law;Track;Comput. Sci. Eng.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3