MPU: Memory-centric SIMT Processor via In-DRAM Near-bank Computing

Author:

Xie Xinfeng1ORCID,Gu Peng1ORCID,Ding Yufei1ORCID,Niu Dimin2ORCID,Zheng Hongzhong2ORCID,Xie Yuan2ORCID

Affiliation:

1. University of California, Santa Barbara, USA

2. Alibaba Group Inc., USA

Abstract

With the growing number of data-intensive workloads, GPU, which is the state-of-the-art single-instruction-multiple-thread (SIMT) processor, is hindered by the memory bandwidth wall. To alleviate this bottleneck, previously proposed 3D-stacking near-bank computing accelerators benefit from abundant bank-internal bandwidth by bringing computations closer to the DRAM banks. However, these accelerators are specialized for certain application domains with simple architecture data paths and customized software mapping schemes. For general-purpose scenarios, lightweight hardware designs for diverse data paths, architectural supports for the SIMT programming model, and end-to-end software optimizations remain challenging.To address these issues, we propose Memory-centric Processing Unit (MPU), the first SIMT processor based on 3D-stacking near-bank computing architecture. First, to realize diverse data paths with small overheads, MPU adopts a hybrid pipeline with the capability of offloading instructions to near-bank compute-logic. Second, we explore two architectural supports for the SIMT programming model, including a near-bank shared memory design and a multiple activated row-buffers enhancement. Third, we present an end-to-end compilation flow for MPU to support CUDA programs. To fully utilize MPU’s hybrid pipeline, we develop a backend optimization for the instruction offloading decision. The evaluation results of MPU demonstrate 3.46× speedup and 2.57× energy reduction compared with an NVIDIA Tesla V100 GPU on a set of representative data-intensive workloads.

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Information Systems,Software

Reference86 articles.

1. NVIDIA. 2018. NVIDIA Tesla V100 GPU Architecture. Retrieved from http://www.nvidia.com https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.

2. Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI’16). USENIX Association, 265–283. Retrieved from https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi.

3. Co-ML: a case for Co llaborative ML acceleration using near-data processing

4. Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi. 2015. PIM-enabled instructions: A low-overhead, locality-aware processing-in-memory architecture. In Proceedings of the ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA’15). IEEE, 336–348.

5. A Case For Asymmetric Processing in Memory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3