Adaptive Cache Compression for High-Performance Processors

Author:

Alameldeen Alaa R.1,Wood David A.1

Affiliation:

1. University of Wisconsin-Madison

Abstract

Modern processors use two or more levels ofcache memories to bridge the rising disparity betweenprocessor and memory speeds. Compression canimprove cache performance by increasing effectivecache capacity and eliminating misses. However,decompressing cache lines also increases cache accesslatency, potentially degrading performance.In this paper, we develop an adaptive policy thatdynamically adapts to the costs and benefits of cachecompression. We propose a two-level cache hierarchywhere the L1 cache holds uncompressed data and the L2cache dynamically selects between compressed anduncompressed storage. The L2 cache is 8-way set-associativewith LRU replacement, where each set can storeup to eight compressed lines but has space for only fouruncompressed lines. On each L2 reference, the LRUstack depth and compressed size determine whethercompression (could have) eliminated a miss or incurs anunnecessary decompression overhead. Based on thisoutcome, the adaptive policy updates a single globalsaturating counter, which predicts whether to allocatelines in compressed or uncompressed form.We evaluate adaptive cache compression usingfull-system simulation and a range of benchmarks. Weshow that compression can improve performance formemory-intensive commercial workloads by up to 17%.However, always using compression hurts performancefor low-miss-rate benchmarks-due to unnecessarydecompression overhead-degrading performance byup to 18%. By dynamically monitoring workload behavior,the adaptive policy achieves comparable benefitsfrom compression, while never degrading performanceby more than 0.4%.

Publisher

Association for Computing Machinery (ACM)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DaeMon: Architectural Support for Efficient Data Movement in Fully Disaggregated Systems;Proceedings of the ACM on Measurement and Analysis of Computing Systems;2023-02-27

2. A Compression Router for Low-Latency Network-on-Chip;IEICE Transactions on Information and Systems;2023-02-01

3. High Performance Instruction Fetch Structure within a RISC-V Processor for Use in Harsh Environments;Lecture Notes in Computer Science;2023

4. Gray counters for non-volatile memories;Memories - Materials, Devices, Circuits and Systems;2022-10

5. A Case for Partial Co-allocation Constraints in Compressed Caches;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3