Label-free neural networks-based inverse lithography technology

Author:

Chen Jing-Tao,Zhao Yuan-Yuan,Zhang YangORCID,Zhu Jian-Xin1ORCID,Duan Xuan-Ming

Affiliation:

1. Jinan University

Abstract

Neural network-based inverse lithography technology (NNILT) has been used to improve the computational efficiency of large-scale mask optimization for advanced photolithography. NNILT is now mostly based on labels, and its performance is affected by the quality of labels. It is difficult for NNILT to achieve high performance and extrapolation ability for mask optimization without using labels. Here, we propose a label-free NNILT (LF-NNILT), which is implemented completely without labels and greatly improves the printability of the target layouts and the manufacturability of the synthesized masks compared to the traditional ILT. More importantly, the optimization speed of LF-NNILT is two orders of magnitude faster than the traditional ILT. Furthermore, LF-NNILT is simpler to implement and can achieve better solvers to support the development of advanced lithography.

Funder

Guangzhou Basic and Applied Basic Research Project

Natural Science Foundation of Guangdong Province

National Natural Science Foundation of China

Science and Technology Planning Project of Guangzhou

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3