Cluster sampling and scalable Bayesian optimization with constraints for negative tone development resist model calibration

Author:

Ma Le12,Ma Xingyu3ORCID,Hao Shaogang3,Dong Lisong12,Wei Yayi12,Tian Zhengguo12

Affiliation:

1. Institute of Microelectronics of Chinese Academy of Sciences

2. University of Chinese Academy of Sciences

3. Tencent Quantum Lab

Abstract

As the semiconductor technology node continues to shrink, achieving smaller critical dimension in lithography becomes increasingly challenging. Negative tone development (NTD) process is widely employed in advanced node due to their large process window. However, the unique characteristics of NTD, such as shrinkage effect, make the NTD resist model calibration more complex. Gradient descent (GD) and heuristic methods have been applied for calibration of NTD resist model. Nevertheless, these methods depend on initial parameter selection and tend to fall into local optima, resulting in poor accuracy of the NTD model and massive computational time. In this paper, we propose cluster sampling and scalable Bayesian optimization (BO) with constraints method for NTD resist model calibration. This approach utilizes cluster sampling strategy to enhance the capability for global initial sampling and employs scalable BO with constraints for global optimization of high-dimensional parameter space. With this approach, the calibration accuracy is significantly enhanced in comparison with results from GD and heuristic methods, and the computational efficiency is substantially improved compared with GD. By gearing up cluster sampling strategy and scalable BO with constraints, this method offers a new and efficient resist model calibration.

Funder

Fundamental Research Funds for the Central Universities

University of Chinese Academy of Sciences

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Guangdong Province Research and Development Program in Key Fields

Ministry of Science and Technology of the People's Republic of China

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3