Effects of RF bias frequency and power on the plasma parameters and ash rate in a remote plasma source

Author:

Zhang Aixian,Lee Moo-Young,Lee Ho-Won,Moon Ho-Jun,Chung Chin-WookORCID

Abstract

Abstract The effects of the RF bias frequency (2–27.12 MHz) and power (0–50 W) on plasma parameters, i.e., effective electron temperatures, electron densities, and electron energy probability functions (EEPFs), were investigated in a remote plasma source. A small cylindrical Langmuir probe based on the Druyvesteyn method was used for the measurements. When the bias power was changed from 0 W to 10 W for each bias frequency, the electron density decreased and the effective electron temperature increased at a given antenna power. As the 2 MHz bias power increased to 50 W, the electron density increased remarkably, whereas the effective electron temperature decreased. Simultaneously, the EEPF evolved from a Druyvesteyn-like distribution to a nearly Maxwellian distribution. In contrast to 2 MHz, when increasing the bias power of 12.5 MHz or 27.12 MHz, there was no distinct change in the effective electron temperature by the bias power and the electron density increased slightly or barely changed. Moreover, the EEPFs retained a Druyvesteyn-like distribution during the bias power increase. These results reveal that the plasma parameters are more controllable at lower bias frequencies, and the analysis is presented in relation to the electron heating mechanism. Therewithal, the ash rate for a 2 MHz bias power was observed to be the highest among the three frequencies when the discharge was operated with pure oxygen.

Funder

Small and Medium Business Administration

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3