Affiliation:
1. Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology , Dalian 116024, People's Republic of China
Abstract
A bias power is usually applied in inductively coupled plasmas (ICP) to realize the separate control of the plasma density and the ion energy. In this research, a two-dimensional fluid/electron Monte Carlo hybrid model is developed to self-consistently investigate the bias effect on the stochastic heating and on the radial homogeneity in a biased argon ICP operated at low pressure (3 mTorr). The results show that the temporal evolution of the stochastic heating exhibits a plateau and a peak when the sheath collapses at high bias voltages, due to the limited sheath heating and the electron inertia. In addition, the plasma density in the diffusion chamber increases with bias voltage and bias frequency, because of the more pronounced stochastic heating both at the substrate and at the grounded wall. In the main discharge chamber, the plasma density decreases with bias voltage, due to the compression of the bulk plasma region, and this trend becomes less obvious at high bias frequency, because of the enhanced power absorption caused by the stochastic heating. Therefore, it is concluded that by tuning the bias voltage and bias frequency, the plasma radial uniformity could be modulated efficiently, which is very important for improving plasma processing.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献