Investigation of stochastic heating and its influence on plasma radial uniformity in biased inductively coupled Ar discharges by hybrid simulation

Author:

Huang Jia-Wei1ORCID,Zhao Ming-Liang1ORCID,Zhang Yu-Ru1ORCID,Gao Fei1ORCID,Wang You-Nian1ORCID

Affiliation:

1. Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology , Dalian 116024, People's Republic of China

Abstract

A bias power is usually applied in inductively coupled plasmas (ICP) to realize the separate control of the plasma density and the ion energy. In this research, a two-dimensional fluid/electron Monte Carlo hybrid model is developed to self-consistently investigate the bias effect on the stochastic heating and on the radial homogeneity in a biased argon ICP operated at low pressure (3 mTorr). The results show that the temporal evolution of the stochastic heating exhibits a plateau and a peak when the sheath collapses at high bias voltages, due to the limited sheath heating and the electron inertia. In addition, the plasma density in the diffusion chamber increases with bias voltage and bias frequency, because of the more pronounced stochastic heating both at the substrate and at the grounded wall. In the main discharge chamber, the plasma density decreases with bias voltage, due to the compression of the bulk plasma region, and this trend becomes less obvious at high bias frequency, because of the enhanced power absorption caused by the stochastic heating. Therefore, it is concluded that by tuning the bias voltage and bias frequency, the plasma radial uniformity could be modulated efficiently, which is very important for improving plasma processing.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

AIP Publishing

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3