Author:
Othman Nurul Aida Farhana,Rahman Sharidya,Wan Muhamad Hatta Sharifah Fatmadiana,Soin Norhayati,Benbakhti Brahim,Duffy Steven
Abstract
Purpose
To design and optimize the traditional aluminum gallium nitride/gallium nitride high electron mobility transistor (HEMT) device in achieving improved performance and current handling capability using the Synopsys’ Sentaurus TCAD tool.
Design/methodology/approach
Varying material and physical considerations, specifically investigating the effects of graded barriers, spacer interlayer, material selection for the channel, as well as study of the effects in the physical dimensions of the HEMT, have been extensively carried out.
Findings
Critical figure-of-merits, specifically the DC characteristics, 2DEG concentrations and mobility of the heterostructure device, have been evaluated. Significant observations include enhancement of maximum current density by 63 per cent, whereas the electron concentration was found to propagate by 1,020 cm−3 in the channel.
Practical implications
This work aims to provide tactical optimization to traditional heterostructure field effect transistors, rendering its application as power amplifiers, Monolithic Microwave Integrated Circuit (MMICs) and Radar, which requires low noise performance and very high radio frequency design operations.
Originality/value
Analysis in covering the breadth and complexity of heterostructure devices has been carefully executed through extensive TCAD modeling, and the end structure obtained has been optimized to provide best performance.
Subject
Electrical and Electronic Engineering,Surfaces, Coatings and Films,Condensed Matter Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献