Abstract
SUMMARYParallel kinematics machines (PKMs) can exhibit kinematics as well as actuation redundancy. While the meaning of kinematic redundancy has been already clarified for serial manipulators, actuation redundancy, which is only possible in PKMs, is differently classified in the literature. In this paper a consistent terminology for general redundant PKM is proposed. A kinematic model is introduced with the configuration space (c-space) as central part. The notion of kinematic redundancy is recalled for PKM. C-space, output, and input singularities are distinguished. The significance of the c-space geometry is emphasized, and it is pointed out geometrically that input singularities can be avoided by redundant actuation schemes. In order to distinguish different actuation schemes of PKM, a nonlinear control system is introduced whose dynamics evolves on c-space. The degree of actuation (DOA) is introduced as the number of independent control vector fields, and PKMs are classified as full-actuated and underactuated machines. Relating this DOA to degree of freedom allows to classify the actuation redundancy.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献